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trajectories (which at least satisfy Bliss's multiplier rule) for opti-
mality is outlined.

X 50, 951



GEORGE C. MARSHALL SPACE FLIGHT CENTER

MTP-AERO-62-74

October 2, 1962

UTILIZATION OF THE ACCESSORY MINIMUM
PROBLEM IN TRAJECTORY ANALYSIS

by
Robert W, Hunt

AEROBALLISTICS DIVISION



GEORGE C. MARSHALL SPACE FLIGHT CENTER

MIP-AERO-62-74

UTILIZATION OF THE ACCESSORY MINIMUM
PROBLEM IN TRAJECTORY ANALYSIS

by
Robert W. Hunt '

SUMMARY

The accessory minimum problem is described as it occurs in the
analysis of the "problem of Bolza" in the calculus of variations. A
common trajectory optimization problem is stated in a form to which this
theory may be directly applied. The specific equations arising in that
application are written out, and a procedure for numerically testing
trajectories (which at least satisfy Bliss's multiplier rule) for opti-
mality is outlined.

INTRODUCTION

The general questions to be considered here are concerned with the
investigation of the Jacobi necessary condition applied to trajectory
optimization problems This involves investigation of the accessory
minimum problem in general and the definition, characterization, and
identification of conjugate and focal points. This seems to be a hope-
ful area in which to work as the Jacobi equations form a well-behaved
system of differential equations which can be investigated both ana-
lytically and numerically. The Jacobi necessary condition yields a
further check on extremal arcs to those given by the other classical
necessary conditions. It should also give further insight into the
larger problem of sufficient conditions. The general outline of the
investigation which follows is paralleled by a specific, illustrative
problem,




General Problem (Bolza)

Find, in a class of piece-wise continuous arcs,

x, (t) (i=}, 2, ..., m; t.<ctgt) (1)
satisfying differential equations and end conditions,

0 (£, x, x) =0 =1 2 ..., m<n) (2)

v [co, x(t), g, x(tc)] =0 (=1, 2 ... p< 20 +2),

one which minimizes )
te
J=g [to, x(t), t,, x(tc)] + f £ (t, x, x) dt. ()
to
Here, the symbols X, x stand for the vectors
(%1, Xz, o0y %), (%1, Xz c X ).
In parametric form, £, (@
- 0() + £ (t, x, x) dt, (5)
t, ()
for the parameters (@) = (Q3, ..., Q), < 7 < 2n + 2, near (0) and

admissible curves which join the endrpoz.nts t @) and t. (0) where the
end conditions (3) are of the form

t, =ty @1, ooey ), E; (E)

o i xo(al,...,a)

T
. (6)
c

t, (@1, ovey ozr) x, (t)

i c Xc(al, D) ar)

for values of (0) near (o). Furthermore, the functions in (6) are of
class C2 and © (0) is any function of class C2




DEFINITION OF PROBLEM
Specific Problem

Find, in a class of piece-wise continuous arcs,

X, ) (i=12 ...,5 ; t<tg tc) N

satisfying the equations of motion,

. K x5

¢, = x F cos X =0
1= X - o s~ T 5 2 =
(%3 +-x4)3
. . K xy4
¢2-=-x2-—sinx5- '3 =0
m 2 8

(x5 +xDZ ®)

¢3E;E5‘x1=0

64-=—X4‘X2=0,
and the end conditions,

Wl = xl(to) - xlo =0

]
o

Yo = Kz(to) - X
Y3 = Xs(to) - X30 =0

Vg = x4(to) - X40 =0

2 2 2
¥s = Xa(t)) +xu(t) - r =0 9
r2 g
_ .2 2 _ .o -
¥g = xl(tb) +‘X2(tc) T 0

Yy = x3(t) Xs(tc) + xo(t) x4(t) =0

Cpant 2N
¥g = Tan F2Ct) o~ W =0},

one which minimizes

[+
3 =f dt (or 7= t). (10)

In this formulation, F, K, ., Ty ¢, and w are given constants. o

The mass, m, is of the form m +-ﬁ°t; and m = m_ may be written as a

constraining equation, but with no resulting gain. The control variable
is x5, the direction of thrust.



In the parametric form, the only changes to the above formulation
would be the parameterization of t.,, say

t =tc+a.

[}

(11)

then

J = b/\ dt (or J =08(0) = te +0). (12)

This specific problem gives initial values for the position and
velocity coordinates and specifies the position and velocity vectors at
cut-off time, t.. Furthermore, y, = 0 is the condition that the
position and velocity vectors be orthogonal at cut-off time. The con-
dition V¥g = 0, which may or may not be included, (as indicated by
parentheses), specifies a position angle at t. which is the constant
¢y if w = 0 or ¢5 + wte if w # o. This condition gives the problem a
rendezvous formulation. Finally, the optimization considered here is
for minimum cut-off time, i.e., minimum fuel consumption,

DISCUSSION

According to the multiplier rule, form
4
F (t, x, X, A) = 1+ 7 A 04, (13)
i=31

and obtain the Euler-Lagrange equations. For the specific problem, these
are

rs r> T
2
. 3K Xq X4 X 3K x4
Ag =1y =5 tre |13t B (14)
}\.l = "}\.3
. }\.2 = '}\.4
¥ e :
m ~ (A1 sin X5 - A5 cos xg) = constant




1
along with the equations (8), where r = (;;52 +x4% /2.

Every minimizing arc E must satisfy these equations, the equations
(8), the end conditions (9), and the transversality condition. The
latter can be written

[(F-xi F};i) dt +E dxi} o, teu Wy =0, (15)
and must hold for some set of constants {}u}.and for every choice of the
differentials dt_, dx;..

In the parametric formulation, the transversality condition is
(F - %; F. ) dt +F. dx-] +de = 0. (16)
[ L ¥y x5 e = te

The transversality condition for either form can be written out

for the specific problem but will not be displayed here.

Thus, a system of first order differential equations and a set of
boundary conditions are available, but with some of the boundary con-
ditions being at the variable end point t = t.. The necessary conditions

of Weierstrass, Legendre, and Clebsch could now be investigated. These
will not be discussed here, however, since this discussion is concerned
only with the accessory problem and Jacobi's necessary condition,

Consider a one-parameter, admissible family of arcs

x; (t, a) (to(a) < t < t.(a), lal < ©. ()

The set of variations of the family along E is the set ¢,, t,
n4(t) defined by

dty, = to, (o) da = ¢, da
dt, = t da = .da

c ) Ca (0) g 2 (18)
5xi = xia (t’ O) da = T]i(t) da,

In the parametric case previously considered, this could be accom-
plished by taking

o, = op(a), oy (0) = o, (19)

for a suitable set of functions.




If the arcs of an admissible family all satisfy the equations
¢5 [t, x(t, a), x(t, a)} =0, (20)

then the.variations ni(t) along the arc E contained in the family for
a = 0 satisfy

®B (g, n, W) = ¢6X’ ng + ¢B;<:i Ny = 0. (21)
{ .

For the specific problem, then,

0,

2
. -K 3K x 3K x5 X, ° P, . .
T]1+T]3 [r—a + _.r.s_‘?._ ] + Na [_r_s_a_“'.}+n as]_n 35=0
3K xf

3K %3 X4 > E X o=
= 5 } 7]5 - cos xg5=0

. -K
®2=ﬂ2+ﬂ3[ ]"‘M'rﬁ +

5
. (22)
o3 =13 - M1 =0
®s =74 - M2 =0

in which the x; are the functions xi(t, o) belonging to E, the minimizing
arc.

If the end values of the arcs of an admissible family satisfy the
equations

¥ {:to(a), X [to(a), a] , to(a), x [tc(a), % }- =0, (23)

then the variations of the family along E satisfy
— / .
Xy [El, n(to), £z ﬂ(tc)] = kwu,o t X Y, io)§l

+\I’ru‘,ioni'(to) + (wu,c +xic ll!u, ic) t2 +V'u,ic T]i(tc)’

(24)

Ny it
where Wu,o = Sx s ¥ ou,io = Sxo

o} io

and similarly for wp c and wﬂ, ic’

b




For the specific problem, then,

X10 £1 +1n1(ty) =0

T
Yo = ;‘zo 1 +n2(ty) =0
s = iso E1 +na(ty) =0

(25)
0

Y. = ;‘40 E1 + na(ty)

Ts = (2 %3c Xac * 2 Xgo Xge) E2 + 2 Xa Nal(ty) + 2 x5¢c (k) =0
Yo = (2 X3¢ X3¢ + 2 Xae Xzp) Lz + 2 Xye M1(te) + 2 Xpona(ty) =0
Y7 = (X1¢ Xac + Xoc Xac + X3 ¢ X3¢ + Xac Xz0) Eo

+ Xae n1(te) + Xsc N2(te) + X3¢ Na(te) + xpc naltey) =0

‘ X4 Xg¢ X4c

= w + xgc X4c - + ~———— 74 (t

Ve ( 3¢ Xac m) bz *Z ¥ x5, na(t.)

S

T xE g ) 7O

The first four of these can be simplified by taking&; = 0 since t,
is assumed to be fixed, These are the accessory end conditions and
must be satisfied along with the accessory transversality conditions
given ag in (15), the integrand function now being a quadratic form
2 w(n, n) to be defined presently.

Now consider the accessory minimum problem., The second variation

of J is
te

Jo (E,, Tl) =2y [El; ﬂi(to), o, 1']:i_(tc)] + j 2 w(t, g 7]) dt,

to (26)
where 2 y is a quadratic form in the variations at t, and t. and

2 w(t, 7, ﬁ) = F n.n +2F . 7. ﬁ + F- - ﬁ. ﬁ s 27
X, % x, %, 1 k X, x 1 k> (27)
where the repeated sub-scripts are summed over.

For the parametric form, using (6) and (16) and defining the vari-
ations of X, and Qs respectively, to be

n;(6) = x; (t, o)

a (28)
uh = a{.Ll (o),




the second variation can be written tC
Jo(u, ) = bhk u, U 4—jp 2 w(t, 7, n) dt, (29)
“t
o
where =
) ot . ot 9t
bhk=[(F-xiF§{i)Bahaak+(Ft-xini)Boch 3 o,
2
+F 0 te 3 Xic +_5 te E Xic + . 9 Xic ]
x\9 oy 00 O 00 X, 004 00 t=t,
% e __
+ S ah S Ok (30)

Furthermore, the secondary end conditions

0 X0 . o €.
ni(e) = Gy vy T (0 - x;(t) 55 O]y

S o Y (31)
and the secondary transversality conditions
v Sy J * by Y = O a2
' t=t,

must be satisfied,

~For the specific problem,

2

2 w(t, n, ﬂ) = Ts

3K (3A; X5 + Ao xy) 15K x5 (0g X3 + N5 %y)
r> B r’

3K (Ag X4 + A5 Xa) | 15 K xZ Ay X3 +Ap Xg)
+ 2103 ne o - =7

+ hg [g (A, cos X5 + Ao sin ks)]. (33)




For a minimizing arc, J, (¢,n) > 0. Thus, the accessory minimum
problem is suggested. Find, in the class of admissible variatioms ¢,,
t o, qi(t) satisfying the equations (22) and (25) along E, one which

minimizes J5(¢, 7). This is equivalent in form to the initial problem.
In some cases, the homogeneous quadratic form which is not under the
integral sign in (26) or (29) is positive definite and leads to a

t
[

consideration of minimizing ‘]p 2 w(t, 7, n)dt subject to all the

t
[o}

proper conditions.

To proceed with the accessory minimum problem, let
4

Q(t, n, 15H=w (t, 7, T])+§_j 2i (Di. 38

i=1

Then the Jacobi equations for the specific problem are

. 3K (31; %3 +15 Xy) 15 K x5 Ay X3 + Ao Xy)
£3 = Ta 5 - e
3K (}\.l X4 +}\.2 XB) 15 K Xg X4 les +).2 X4)
+T]4 r5 - r7

3K %, X
_ 3 K 2 3 4
+ 43 [—;Ié—— + _.._r_sx_S_} + 15 [-———————rs ]

. [é K Ay x4 +A2%3) 15Kx, 0 X3 +2p x4)J

s r7

R P 5 7
3 K XS X4 2
. -K 3K x
4y = - 45
L= -8,

fis § (A, cos ks + As sin ks) +-£ (£, sin ks - £, cos is) = constant,
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together with the equations (22). This problem has been formulated in

such a way that the Jacobi system is non-singular, as can be seen by

checking the determinant of the matrix (Fk- k-)' These Jacobi equations,
1]

along with the equations (22), give a linear, homogeneous, first-order

system of differential equations, a vector solution of which is of the

form

L(t) = col (n1 N2 Nz na ns £y L2 43 £4).

By standard methods, a fundamental set of vector solutions can be
defined by specifying appropriate initial conditions.

Now, a conjugate point (or focal point) t* can be defined in the
classical way as a value of t such that there exists a non-trivial vector
solution { (t) of the Jacobi equations satisfying the transversality
conditions and end conditions for t = ty and t = t*, The word "conjugate'
is usually used in the fixed end point case (when the transversality
and end conditions are trivially satisfied) and the word "focal" when
one or both end points vary over a manifold. Several characterizations
of conjugate points or focal points in terms of certain determinants or
matrices are then available.

The necessary condition of Jacobi states that -if E affords a weak
minimum to J, no conjugate point (or focal point) of t = t, on the
open interval (t,, tc) can coincide with a point at which the Jacobi
equations are non-singular,

For the specific problem, the interest now lies in analyzing a
trajectory for focal points to t = ty. This can be done as follows.
First, a trajectory and cut-off time t. is obtained numerically by
using the Euler equations, the boundary conditions given, and arbitrary
values for boundary conditions not specified or values previously
ascertained to insure that the final cut-off conditions are satisfied,
Then the accessory problem and its associated differential equations
and conditions can be investigated numerically, taking advantage of the
linearity of the Jacobi equations to obtain a fundamental family of
vector solutions., Then, any of the several characterizations (1, 2)
of conjugate and focal points can be used to check the Jacobi condition,

A number of experimental trajectories have been investigated with
respect to the above concepts. In this manner, conjugate points have
been found to exist, thus ruling out the associated trajectory as an
optimum trajectory. 1In other cases, trajectories free of conjugate points
have been obtained and thus retained as possible choices for the optimal
trajectory corresponding to given conditions, The non-existence of
conjugate points is still only a necessary, not a sufficient, condition
for the minimizing arc. However, certain combinations of necessary
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conditions, Jacobi's among them, do yield sufficient conditions. This
area is still open to much investigation and, in fact, provided some of
the motivation for the present consideration of Jacobi's condition.

The procedure for searching for conjugate or focal points is still
long and difficult., Hopefully, an iterative procedure can be worked
out to check trajectories quickly and easily for such points. Future
efforts in this research are to be directed toward this end as well as
toward some information on sufficiency. Also, another closely allied
area presently being investigated is concerned with the characteristic
roots of the characteristic form of the accessory boundary problem,
This will be discussed in a later report,
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